自动驾驶应用中使用的激光雷达传感器会受到不利天气条件的负面影响。一种常见但有研究的效果是在寒冷的天气中凝结车辆气体的凝结。这种日常现象会严重影响雷达测量值的质量,从而通过创建像幽灵对象检测之类的人工制品,从而导致不太准确的环境感知。在文献中,使用基于学习的方法来实现雨水和雾之类的不利天气影响的语义分割。但是,这样的方法需要大量标记的数据,这可能非常昂贵且艰辛。我们通过提出两步方法来检测冷凝车气排气的方法来解决这个问题。首先,我们在场景中为每辆车确定其排放区域,并在存在的情况下检测气体排气。然后,通过对可能存在气体排气的空间区域进行建模来检测到孤立的云。我们测试了实际城市数据的方法,表明我们的方法可以可靠地检测到不同情况下的气体排气,从而吸引了离线预标和在线应用程序(例如幽灵对象检测)的吸引力。
translated by 谷歌翻译
不利天气条件可能会对基于激光雷达的对象探测器产生负面影响。在这项工作中,我们专注于在寒冷天气条件下的车辆气体排气凝结现象。这种日常效果会影响对象大小,取向并引入幽灵对象检测的估计,从而损害了最先进的对象检测器状态的可靠性。我们建议通过使用数据增强和新颖的培训损失项来解决此问题。为了有效地训练深层神经网络,需要大量标记的数据。如果天气不利,此过程可能非常费力且昂贵。我们分为两个步骤解决此问题:首先,我们根据3D表面重建和采样提出了一种气排气数据生成方法,该方法使我们能够从一小群标记的数据池中生成大量的气体排气云。其次,我们引入了一个点云增强过程,该过程可用于在良好天气条件下记录的数据集中添加气体排气。最后,我们制定了一个新的训练损失术语,该损失术语利用增强点云来通过惩罚包括噪声的预测来增加对象检测的鲁棒性。与其他作品相反,我们的方法可以与基于网格的检测器和基于点的检测器一起使用。此外,由于我们的方法不需要任何网络体系结构更改,因此推理时间保持不变。实际数据的实验结果表明,我们提出的方法大大提高了对气体排气和嘈杂数据的鲁棒性。
translated by 谷歌翻译
虽然在驾驶场景中自我监督的单眼深度估计已经取得了可比性的性能,但违反了静态世界假设的行为仍然可以导致交通参与者的错误深度预测,造成潜在的安全问题。在本文中,我们呈现R4DYN,这是一种新颖的技术,用于在自我监督深度估计框架之上使用成本高效的雷达数据。特别是,我们展示如何在培训期间使用雷达,以及额外的输入,以增强推理时间的估计稳健性。由于汽车雷达很容易获得,这允许从各种现有车辆中收集培训数据。此外,通过过滤和扩展信号以使其与基于学习的方法兼容,我们地满地雷达固有问题,例如噪声和稀疏性。通过R4DYN,我们能够克服自我监督深度估计的一个主要限制,即交通参与者的预测。我们大大提高了动态物体的估计,例如汽车在挑战的NUSCENES数据集中达到37%,因此证明雷达是用于自主车辆中单眼深度估计的有价值的额外传感器。
translated by 谷歌翻译